Tag Archives: Tissue (biology)

Stem cells overcome major cause of blindness

Researchers have identified a way to enhance regrowth of human corneal tissue to restore vision, using a molecule that acts as a marker for hard-to-find limbal stem cells.

This work, a collaboration among the Harvard-affiliated Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Children’s Hospital, Brigham and Women’s Hospital, and the VA Boston Healthcare System, holds promise for burn patients, victims of chemical injury, and others with damaging eye diseases.

The research, published this week in the journal Nature,is also one of the first examples of constructing a tissue from an adult-derived human stem cell.

Limbal stem cells reside in the eye’s
Read More…

Stanford’s Irving Weissman on the (lost?) promise of stem cells

Stanford stem cell researcher Irving Weissman, MD, published an article in Cell Stem Cell today discussing barriers to stem cell research:

While I am usually an optimist, I must admit that there is a possibility that we will continue to be in the Dark Ages of medicine for quite some time. I fear that therapies using purified tissue and organ-specific stem cells – the only self-renewing cells in a tissue or that can regenerate that tissue or organ for life – will remain elusive.

Weissman, who directs Stanford’s Institute for Stem Cell Biology and Regenerative Medicine, goes on to cover the
Read More…

Stem cells can be harvested long after death

Some stem cells can lay dormant for more than two weeks in a dead person and then be revived to divide into new, functioning cells, scientists in France said.
The research, published in the journal Nature Communications, unlocks further knowledge about the versatility of these cells, touted as a future source to replenish damaged tissue.

“Remarkably, skeletal muscle stem cells can survive for 17 days in humans and 16 days in mice, post mortem well beyond the 1-2 days currently thought,” they said in a statement.
The stem cells retained their ability to differentiate into perfectly functioning muscle cells, they found.

“This discovery
Read More…

A New Role for Old Sox

Understanding the genetic underpinnings of the biology of stem cells is crucial for their use in disease research and treatment. Scientists have identified a variety of genetic factors that maintain self renewal properties in embryonic, fetal, and adult stem cells. But whether these cell types are controlled by the same or different molecules is a persisting question.

Recent work from HSCI Principal Faculty Konrad Hochedlinger, PhD, begins to crack that mystery. Sox2 is a gene whose expression is required for maintaining pluripotency in early embryonic cells and regulating tissue development in the fetal stage. But until now, Sox2 expression had
Read More…

Stem cells may help heal damaged arteries

In a new study, researchers have for the first time demonstrated that baboon embryonic stem cells can be programmed to completely restore a severely damaged artery.

These early results show promise for eventually developing stem cell therapies to restore human tissues or organs damaged by age or disease.

“We first cultured the stem cells in petri dishes under special conditions to make them differentiate into cells that are the precursors of blood vessels, and we saw that we could get them to form tubular and branching structures, similar to blood vessels,” John L. VandeBerg, chief scientific officer from Texas Biomedical Research
Read More…