Rutgers Team Discovers Novel Approach to Stimulate Immune Cells

Researchers at Rutgers University have uncovered a new way to stimulate activity of immune cell opiate receptors, leading to efficient tumor cell clearance.

Dipak Sarkar, professor in the Department of Animal Sciences at the Rutgers School of Environmental and Biological Sciences and his research team have been able to take a new pharmacological approach to activate the immune cells to prevent cancer growth through stimulation of the opiate receptors found on immune cells.

This research, funded by the National Institutes of Health-National Institute on Alcohol Abuse and Alcoholosm, is featured on the cover of the May 11 issue of the Journal of Biological Chemistry. It describes two structurally different but functionally similar opioid receptors, Mu- and Delta-opioid receptors. These receptors form protein complexes as either two structurally similar receptors as a homodimer—formed by two identical molecules—or two structurally dissimilar protein complexes as a heterodimer—formed by ethanol inducement—in immune cells. The team pharmacologically fooled these two structurally different but functionally similar opioid receptors to form more homodimers so that opioid peptide increases the immune cells’ ability to kill tumor cells.

“The potential for this research can lead to production of endogenous opioids in the brain and the periphery becoming more effective in regulating stress and immune function,” says Sarkar.

Opioids, like endorphins, communicate with the immune system, so when there is a deficit of endorphin – due to fetal alcohol exposure, alcoholism and drug abuse, anxiety, depression and chronic psychological stress – the body undergoes stress shocks and, as Sarkar suggests, causes “immune incompetence.”

Continue reading

Incoming search terms:

newesttreatments for mu opioid receptor stimulation.