Tag Archives: Stanford University

USA – A Single Stem Cell Regenerates Muscle

Alessandra Sacco

A study on mice directed by Alessandra Sacco of Stanford University has shown that once inserted into a diseased muscle, just one adult muscular stem cell can reproduce to form an entire ‘family’ of cells and restore lost muscular function. In a leg muscle with no muscular stem cells that has been irreversibly damaged, a single adult stem cell can take root and multiply, restoring muscular function.

The study was presented today in the Annual Meeting of the American Society of Cell Biology
(ASCB) in San Francisco. The muscular stem cells in this case are called
Read More…

Scientists coax skin cells to behave like muscle cells

Helen Blau

Scientists have now shown that skin cells can be coaxed to behave like muscle cells and muscle cells like skin cells.
The fickleness of the cells, and the relative ease with which they make the switch, provide a glimpse into the genetic reprogramming that must occur for a cell to become something it’s not.

“We’d all like to understand what happens inside the black box (cell),” said Helen Blau, professor and member of Stanford University‘s Stem Cell Biology and Regenerative Medicine Institute and co-author of a new study on the subject.
Harnessing these genetic makeovers will allow scientists to better
Read More…

Stem cells hold promise for male sterility

A Montana State University researcher and her co-researchers are receiving international attention for showing that skin cells from infertile men can be used to create the precursors of sperm – research that holds promise for treating male infertility (…)

The team took skin cells from men who suffer from a genetic disorder, known as azoospermia, which prevents them from producing sperm. Those skin cells were then turned into stem cells, specifically, induced pluripotent stem cells, or iPSC. Like other stem cells, iPSC have the ability to become any other type of cell.

The team then implanted the stem cells into the
Read More…

STEMCELL Technologies Applauds Feeder-Free Derivation of Human Induced Pluripotent Stem Cells

In a landmark paper, researchers at Stanford University have described a new way to derive human induced pluripotent stem cells (iPSCs) without the use of contaminating mouse feeder cells. Using adipose cells as the starting cell population and mTeSR1, a defined medium that allows the expansion of human embryonic and induced pluripotent stem cells without the use of feeders, the researchers were able to fully reprogram the cells to the pluripotent state.

mTeSR1 is a fully defined medium and is the most widely used feeder-independent method for culturing human pluripotent stem cells, with citations in more than 25 publications.

read
Read More…

From Stem Cells To New Organs: Scientists Cross Threshold In Regenerative Medicine

A new report brings bioengineered organs a step closer, as scientists from Stanford and New York University Langone Medical Center describe how they were able to use a “scaffolding” material extracted from the groin area of mice on which stem cells from blood, fat, and bone marrow grew. This advance clears two major hurdles to bioengineered replacement organs, namely a matrix on which stem cells can form a 3-dimensional organ and transplant rejection.