Tag Archives: Stanford University

STEMCELL Technologies Applauds Feeder-Free Derivation of Human Induced Pluripotent Stem Cells

In a landmark paper, researchers at Stanford University have described a new way to derive human induced pluripotent stem cells (iPSCs) without the use of contaminating mouse feeder cells. Using adipose cells as the starting cell population and mTeSR1, a defined medium that allows the expansion of human embryonic and induced pluripotent stem cells without the use of feeders, the researchers were able to fully reprogram the cells to the pluripotent state.

mTeSR1 is a fully defined medium and is the most widely used feeder-independent method for culturing human pluripotent stem cells, with citations in more than 25 publications.

read
Read More…

From Stem Cells To New Organs: Scientists Cross Threshold In Regenerative Medicine

A new report brings bioengineered organs a step closer, as scientists from Stanford and New York University Langone Medical Center describe how they were able to use a “scaffolding” material extracted from the groin area of mice on which stem cells from blood, fat, and bone marrow grew. This advance clears two major hurdles to bioengineered replacement organs, namely a matrix on which stem cells can form a 3-dimensional organ and transplant rejection.

Source of cancer stem cells’ resistance to radiation discovered at Stanford

Much to the dismay of patients and physicians, cancer stem cells — tiny powerhouses that generate and maintain tumor growth in many types of cancers — are relatively resistant to the ionizing radiation often used as therapy for these conditions. Part of the reason, say researchers at Stanford University School of Medicine, is the presence of a protective pathway meant to shield normal stem cells from DNA damage. When the researchers blocked this pathway, the cells became more susceptible to radiation.

“Our ultimate goal is to come up with a therapy that knocks out the cancer stem cells,” said Robert
Read More…

Unusual ‘altruistic’ stem cell behavior with possible link to cancer

When most groups of mammalian cells are faced with a shortage of nutrients or oxygen, the phrase “every man for himself” is more apt than “all for one, one for all.” Unlike colonies of bacteria, which often cooperate to thrive as a group, mammalian cells have never been observed to help one another out. But a new study led by a researcher at the Stanford University School of Medicine has shown that certain human embryonic stem cells, in times of stress, produce molecules that not only benefit themselves, but also help nearby cells survive.

“Altruism has been reported among bacterial
Read More…

Stem cell research can find treatment for kidney and renal diseases

One in 10 adults in the U.S. — more than 20 million people — are suffering from some degree of chronic kidney disease. Kidney transplants offer a hope for cure, but thousands of patients die each year due to a shortage of donor organs. Even patients who are lucky enough to receive transplants run the risk of their immune systems rejecting the donor kidneys, and they have to take immunosuppressive drugs with serious side effects for the rest of their lives.

Vito Campese, professor and chair of the Keck School of Medicine of USC’s nephrology division, underscores the need to
Read More…