Tag Archives: National Science Foundation

New stem cell technique promises abundance of key heart cells

Cardiomyocytes, the workhorse cells that make up the beating heart, can now be made cheaply and abundantly in the laboratory.

A team of Wisconsin scientists describes a way to transform human stem cells — both embryonic and induced pluripotent stem cells — into the critical heart muscle cells by simple manipulation of one key developmental pathway. The technique promises a uniform, inexpensive and far more efficient alternative to the complex bath of serum or growth factors now used to nudge blank slate stem cells to become specialized heart cells.

“Our protocol is more efficient and robust,” explains Sean Palecek, the senior
Read More…

Blood-brain barrier building blocks forged from human stem cells

The blood-brain barrier — the filter that governs what can and cannot come into contact with the mammalian brain — is a marvel of nature. It effectively separates circulating blood from the fluid that bathes the brain, and it keeps out bacteria, viruses and other agents that could damage it.

But the barrier can be disrupted by disease, stroke and multiple sclerosis, for example, and also is a big challenge for medicine, as it can be difficult or impossible to get therapeutic molecules through the barrier to treat neurological disorders.

Now, however, the blood-brain barrier may be poised to give up
Read More…

NSF award to stem cells engineering

From a simple blood draw, Krishanu Saha, a researcher in WID’s BIONATES research group and assistant professor of biomedical engineering, could enable doctors to create stem cells to develop drugs personalized to their patients.

As part of his $400,000 National Science Foundation CAREER Award over the next five years, Saha will focus on improving the process to directly evolve DNA sequences and proteins in human stem cells.

Stem cells have the potential to develop into many different cell types, which makes them ideal for a variety of medical research projects.

The evolution of synthetic DNA sequences in human stem cells could catalyze
Read More…