Tag Archives: Cell potency

Stem Cell Granted Key Patent for Liver Disease

International Stem Cell Corporation, a California-based biotechnology company, today announced that the United States Patent and Trademark Office (USPTO) has granted the Company a patent for a method of creating pure populations of definitive endoderm, precursor cells to liver and pancreas cells, from human pluripotent stem cells. This patent is a key element of ISCO’s metabolic liver disease program and allows the Company to produce the necessary quantities of precursor cells in a more efficient and cost effective manner.

The patent, 8,268,621, adds to the Company’s growing portfolio of proprietary technologies relating to the development of potential treatments
Read More…

Tracing the Beginnings of Hematopoietic Stem Cells

Hematopoietic stem cells (HSCs) give rise to all other blood cell types, but their development and how their fate is determined has long remained a mystery. In a paper published online this week in Nature, researchers at the University of California, San Diego School of Medicine elaborate upon a crucial signaling pathway and the role of key proteins, which may help clear the way to generate HSCs from human pluripotent precursors, similar to advances with other kinds of tissue stem cells.

Principal investigator David Traver, PhD, professor in the Department of Cellular and Molecular Medicine, and colleagues focused on the
Read More…

A New Role for Old Sox

Understanding the genetic underpinnings of the biology of stem cells is crucial for their use in disease research and treatment. Scientists have identified a variety of genetic factors that maintain self renewal properties in embryonic, fetal, and adult stem cells. But whether these cell types are controlled by the same or different molecules is a persisting question.

Recent work from HSCI Principal Faculty Konrad Hochedlinger, PhD, begins to crack that mystery. Sox2 is a gene whose expression is required for maintaining pluripotency in early embryonic cells and regulating tissue development in the fetal stage. But until now, Sox2 expression had
Read More…

Stem cells tolerated by immune system

Many of us know by now that stem cells are remarkably fluid in the types of cells they can become. But this fluidity, or pluripotency, comes with a price. Several studies have shown that the body’s immune system will attack and reject even genetically identical transplanted stem cells, making it difficult to envision their usefulness for long-term therapies.

Now Stanford cardiologist Joseph Wu, MD, PhD, and his colleagues have shown that coaxing the stem cells to become more-specialized (a process known as differentiation) before transplantation allows the body to recognize and tolerate the cells. Their research was published today in
Read More…

Adult Stem Cell Research Shows Promise

Scientists sporting white coats and safety gloves are working in a bright Food and Drug Administration (FDA) lab on an incredible project.

They are part of FDA’s MSC Consortium, a large team of FDA scientists studying adult mesenchymal stem cells (MSCs)—cells that could eventually be used to repair, replace, restore or regenerate cells in the body, including those needed for heart and bone repair.

The scientists’ investigational work is unprecedented: Seven labs at FDA’s Center for Biologics Evaluation and Research formed the consortium to fill in gaps in knowledge about how stem cells function (…)